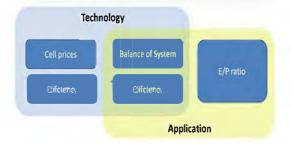


https://www.irena.org/-/media/Files/IRENA/Agency/Events/2017/Mar/15/2017 Kairies Battery Cost and Performance 01.pdf

Battery storage technology improvements and cost reductions to 2030: A Deep Dive


International Renewable Energy Agency Workshop

Düsseldorf, 17.03.2017 Kai-Philipp Kairies, ISEA / RWTH Aachen

Agenda

Battery performance and cost

□ The current and future cost and performance of battery electricity storage for electric power

 Calculating the cost of service of electricity storage

- Example calculations
 - □ Load leveling
 - □ Rural electrification

Overview: Storage Technologies

- Mechanical Storage Systems
 - □ Pumped Hydro Storage
 - □ Compressed Air Energy Storage
 - Flywheels
- Lead-Acid Batteries
 - ☐ Flooded / VRLA

- High Temperature Batteries
 - NaNiCl / NaS
- Flow Batteries
 - □ Vanadium Flow / ZnBr Hybrid Flow
- Lithium-Ion Batteries
 - □ NMC / NCA / LFP / Titanate

Overview: Storage Technologies

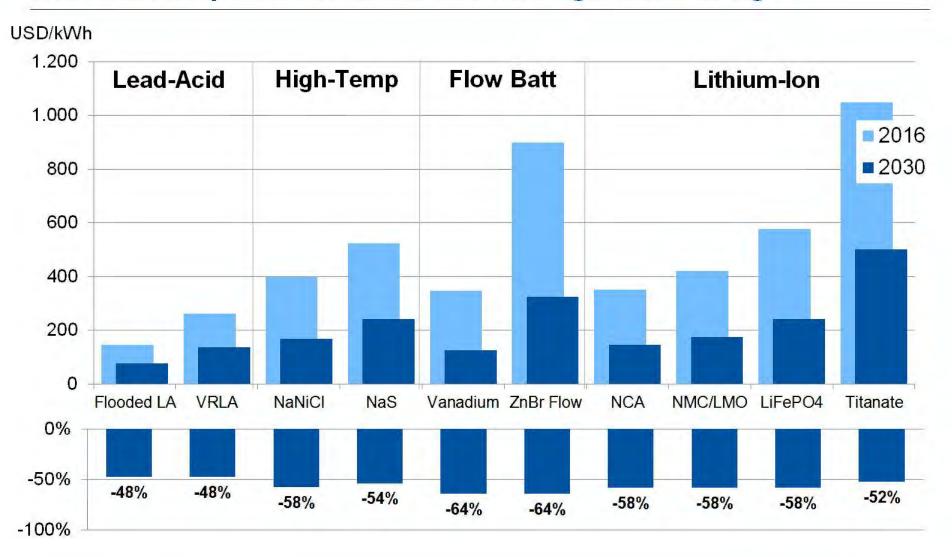
- Cost development
 - Energy installation costs [USD/kWh]
 - Power installation costs [USD/kW]
- Electrochemical properties
 - Energy density
 - □ Power density
 - □ Power dynamics

- Performance development
 - Cyclic lifetime
 - □ Calendric lifetime
 - □ Round-trip-efficiency
 - Self-discharge

Overview: Power Conversion Units

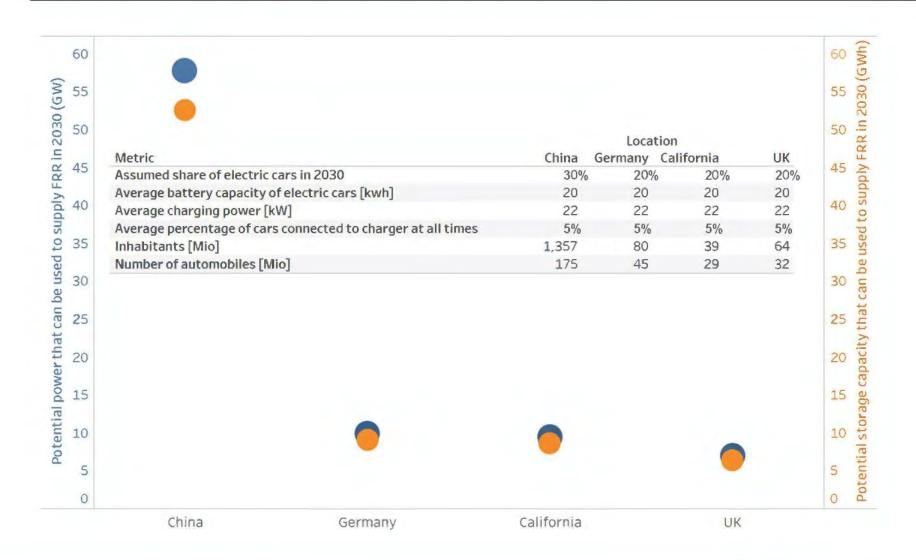
- Power conversion units can have a significant influence on the cost of service, depending on the application
- Electric machines
 - □ PHS / CAES / Flywheel

- Inverter
 - □ Small scale <= 30 kW</p>
 - □ Large scale > 30 kW
- No inverter
 - □ For DC applications

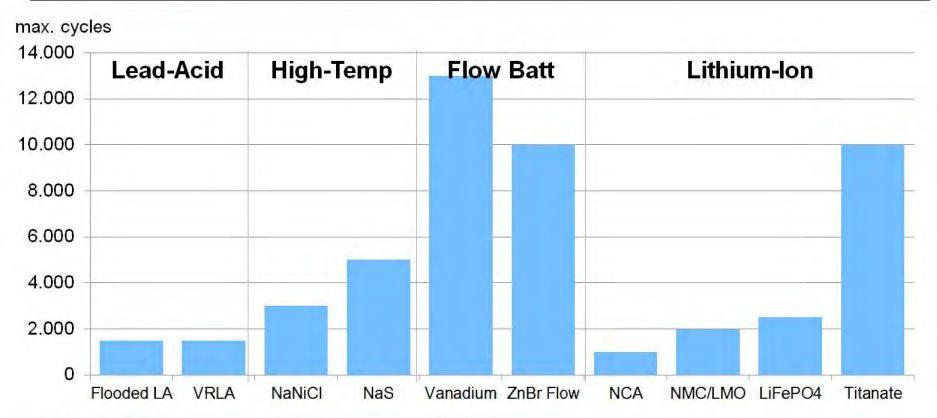

Overview: Methodology

> 150 literature sources

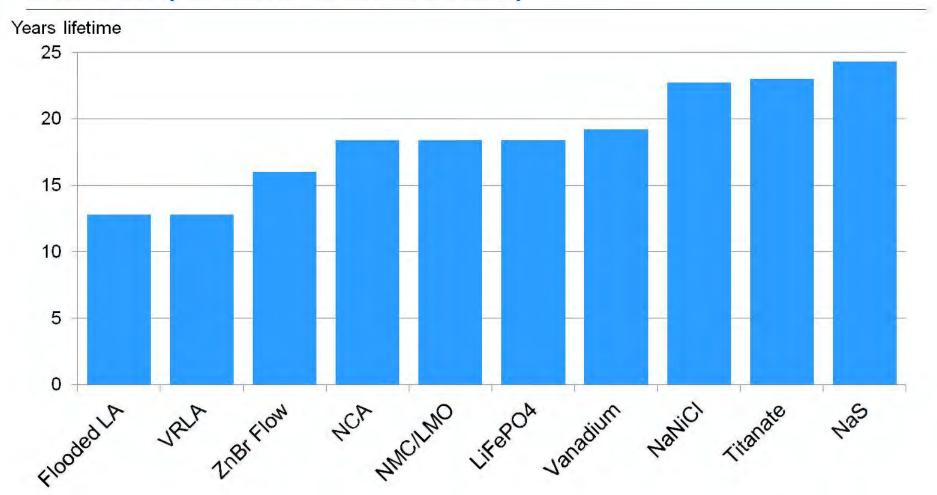
Expert interviews



Cost development of different storage technologies



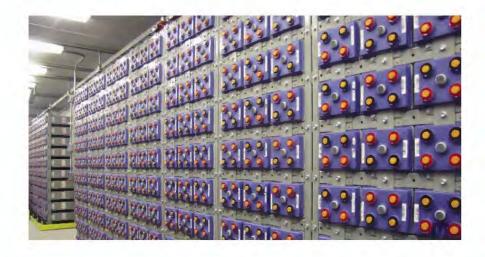
Potentials of multi-use of electric vehicles


Performance: Batteries are already offering excellent lifetimes (cyclic lifetime, 2016)

- Calendric aging most important factor
- Stationary applications: Storage systems often do not utilize their maximum cycles

Performance: Batteries are already offering excellent lifetimes (calender lifetime, 2030)

Detailed information for 15 storage technologies available



11 /

Main Development Drivers Lead-Acid Batteries (Flooded and VRLA)

- Production automation
 - Stationary lead-acid batteries are often produced in semi-automated plants
 - Scales and production automation can substantially decrease prices
- Further optimization of the cell design and additives promise to increases performance
- Largest risk: Competition of lithium-ion batteries in traditional lead-acid applications

- Innovative developments
 - Copper stretch metal
 - Carbon added electrodes
 - Hybridization (e.g. combining with lithium-ion or flywheels)

Main Development Drivers Lithium-Ion Batteries

- Differentiation between 4 different technologies
 - NMC/LMO, NCA, LFePO4 and Titanate
- International transition towards electro mobility leads to substantial scale effects (NCA NMC/LMO)
 - □ 70% price reduction since 2012
- > 170 GWh / year production capacities projected for 2020
 - □ Tesla Gigafactory / BYD / CALB /...
 - □ LG Chem / Foxconn / CATL / ...

- Innovative developments
 - Mass production
 - Utilize silicon in anode
 - Durable LMO cathodes
 - □ 5 V electrolytes
 - Lithium-Sulphur
 - Lithium-Air

Main Development Drivers High-Temperature Batteries (NaS and ZEBRA)

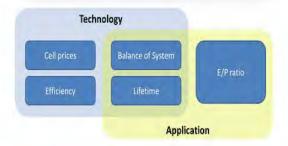
- Sodium Sulfur (NaS)
 - Potential for very low cost active materials
 - Corrosion needs to be controlled

- "Low temperature" electrolytes (~150 °C) can
 - □ Reduce corrosion / Increase lifetime
 - □ Reduce thermal self-discharge
 - But low max. power, only stationary applications

- Innovative developments
 - Larger cell stacks promise cheaper production costs
 - Development of low cost corrosion resistant materials (e.g. coatings, joints, ...)

Main Development Drivers Flow Batteries (Vanadium and ZnBr)

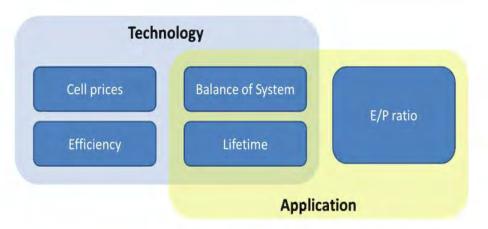
- Flow batteries offer an independent design of storage- and power capacity
 - Optimal for high E/P ratio applications
- Production of larger cell packs promises higher outputs at lower costs
- In order to compete, electrolyte and active material costs need to fall below 100 USD/kWh



- Innovative developments
 - □ Improved membrane production
 - Improve calendric lifetime of electrolyte
 - Aqueous electrolytes (saltwater) flow batteries

Agenda

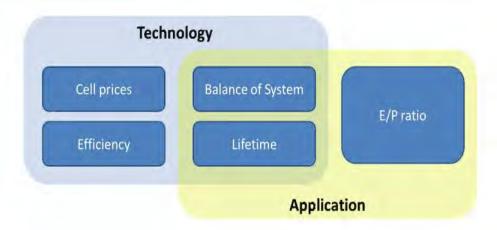
- Battery performance and cost
 - The current and future cost and performance of battery electricity storage for electric power


Calculating the cost of service of electricity storage

- Example calculations
 - Load leveling
 - Rural electrification

Calculating Cost of Service for ESS

- Definition of "Cost of Service"
 - Different value of storage depending on application (energy vs. power)
 - Different battery lifetime depending on application
- Applications defined by four parameters
 - Power
 - □ E/P ratio
 - Cycles per day
 - Electricity price



Calculating Cost of Service for ESS

- Definition of "Cost of Service"
 - Different value of storage depending on application (energy vs. power)
 - Different battery lifetime depending on application

- Applications defined by four parameters
 - + Invest (Energy Storage Unit)
 - + Invest (Power Conversion Unit)
 - + Invest (Other, i.e. planning, land)
 - + Conversion losses
 - + Self-discharge losses

- + Maintenance (Energy Storage Unit)
- + Maintenance (Power Conversion Unit)
- + Running costs (Other, i.e. rent)

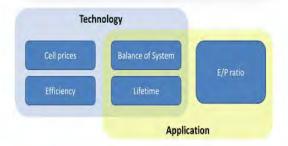
Storage Application

- Grid Services
 - □ Enhanced Frequency Response
 - □ Frequency Containment Reserve
 - □ Frequency Restoration Reserve
 - □ Energy Shifting
- Behind-the-meter
 - Solar Self consumption
 - □ Community Storage
 - □ Increased Power Quality
 - Peak Shaving
 - □ Time-of-lse

- Off-grid
 - Nano-grid
 - Village Electrification
 - □ Island Grid

Effect of different locations / countries

- Local conditions can have a significant impact on the calculation of Cost of Service
 - □ Land costs
 - Interest rate
 - □ Grid connection point
 - Electricity price
 - Maintenance costs
 - Temperature / Humidity / Salt spray
 - Costs of labour
- Different storage system design for different parts of the world



Agenda

- Battery performance and cost
 - The current and future cost and performance of battery electricity storage for electric power

 Calculating the cost of service of electricity storage

Example calculations

- Load leveling
- □ Rural electrification

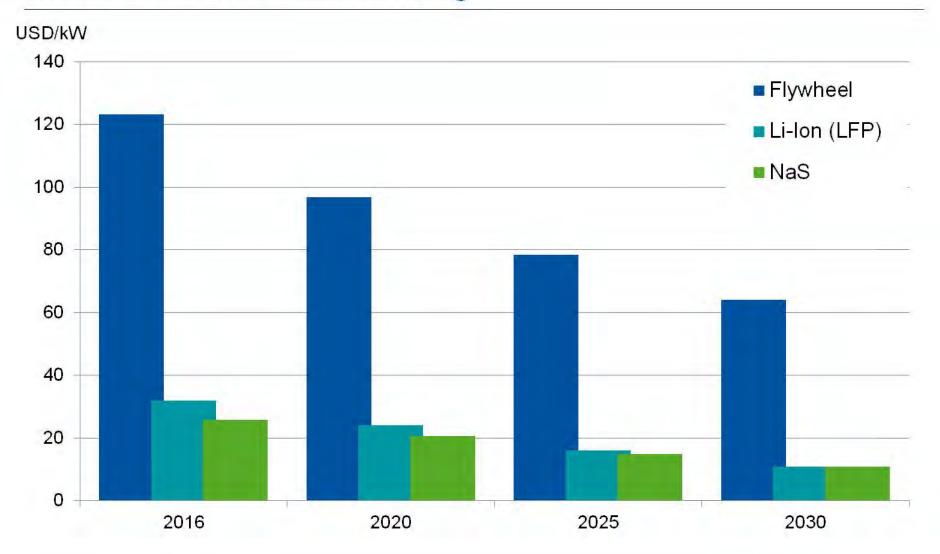
Example 1: Peak shifting ("power applications")

Application

- Industrial peak shaving
 - □ 200 kW rated power
 - □ 5 kWh nomical capacity
 - □ 0,6 cycles per day

Storage Technologies

- Li-lon (LFP)
- Li-Ion (Titanate)
- Redox-Flow (ZbBr)


Results

Cost of power per year [USD/kW]

Cost of service: Peak shifting

Example 2: Rural electrification

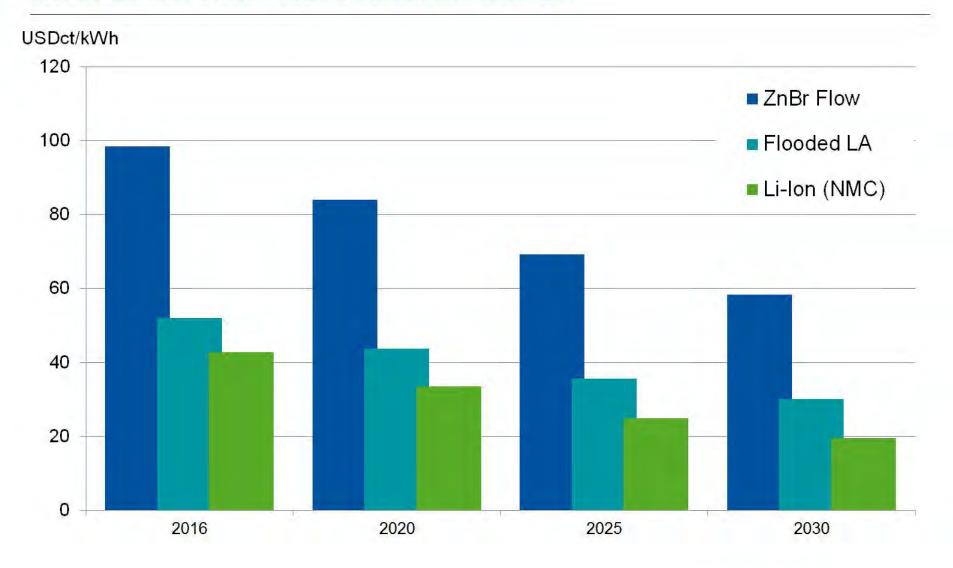
Application

- Large Scale Energy storage:
 - □ 1060 GW rated power
 - 9 GWh nomical capacity
 - □ 0,8 cycles per day

Storage Technologies

- Pumped Hydro Storage
- Redox-Flow (Vanadium)
- Lead Acid batteries (Flooded)

Results


Cost of energy [USD/kWh]

Cost of service: Rural electrification

Image sources

- 1 http://mms.businesswire.com/bwapps/mediaserver/viewMedia?mgid=298837&vid=5
- 2 http://tohami.com/wp-content/uploads/2015/01/photo_538x353.jpg
- 3 http://aemstatic-ww2.azureedge.net/content/dam/HRW/Volume-23/Issue6/goldisthal_pumped-storage_power_plant_Source_Vattenfall.jpg
- 4 http://www.climatetechwiki.org/sites/climatetechwiki.org/files/images/teaser/blob.jpg
- 5 http://www.climatetechwiki.org/sites/climatetechwiki.org/files/images/teaser/flywheels.jpg
- 6 http://www.multicell.co.uk/images/products/l-marine-FLA.jpg
- 7 http://www.windpowerengineering.com/wp-content/uploads/2014/03/Enersys1-battery-edite opt.jpeg
- 9 http://www.batterysupplies.be/sites/default/files/images/Litium-cells.jpg
- 10 http://www.sealedperformance.com.au/wp-content/uploads/2015/09/Lithium2-470x290.jpg
- 11 http://foto.genstr.com/upload/c/c5/cc51ceac75d9d1d65bf9c8204e233638.jpg
- 12 http://www.metricmind.com/ac_honda/images/zebra.jpg
- 13 https://www.energy-storage.news/images/made/assets/images/editorial/xNas_batteries_low_res_ 750_500_s.jpg.pagespeed.ic.lUc5YUX6ik.jpg
- 14 https://www.fraunhofer.de/de/presse/presseinformationen/2013/Maerz/Durchbruch-fuer-neuartige-Stromspeicher-Redox-Flow/_jcr_content/contentPar/pressarticle/pressArticleParsys/textblockwithpics/imageComponent1/image.img.large.jpg/1446811046399_pi16-g-redox-flow.jpg
- 15 http://www.energy-without-carbon.org/sites/default/files/Flow%20battery%20redflow.jpg
- 16 http://www.kingislandrenewableenergy.com.au/sites/all/files/kireip/imagecache/lightbox_image/images/hero/hydro_tasmania_to_install_australias_largest_battery_on_king_island/ecoult_battery_at_hampton_wind_farm_1.jpg
- 17 http://www.presa.com.au/wp-content/uploads/2015/07/solar-panels-hail.jpg
- 18 http://www.erantiengineering.fi/picts/pilot-wind-turbine.jpg
- 19 https://www.homepower.com/sites/default/files/styles/article_gallery_active/public/articles/images/165-48e.jpg?itok=LMt8pgq2
- 20 https://www.google.de/imgres?imgurl=http%3A%2F%2Fwww.ev-power.com.au%2FIMG%2Fjpg%2FIMGP3524a.jpg&imgrefurl=http%3A%2F%2Fwww.ev-power.com.au%2F-PROJECTS-.html&docid=gT0c20j3FivCOM&tbnid=RIPAmmrBn91wBM%3A&vet=1&w=740&h=564&bih=770&biw=1600&q=off%20grid%20solar% 20storage&ved=0ahUKEwiuqqKKmdjSAhXDVRQKHd5fBPgQMwhSKCwwLA&iact=mrc&uact=8#h=564&imgrc=RIPAmmrBn91wBM:&vet=1&w=740
- 21 http://industries.ul.com/wp-content/uploads/sites/2/2013/11/UL_Industries_ENERGYINDUSTRIALSOL_SegmentLanding_Batteries.jpg

Unless otherwise stated, all used pictures are property of the Institute for Power Electronics and Electrical Drives (ISEA) at Aachen University (RWTH Aachen)

Battery storage technology improvements and cost reductions to 2030: A Deep Dive

International Renewable Energy Agency Workshop

Düsseldorf, 17.03.2017 Kai-Philipp Kairies

Detailed information on storage technologies

International Renewable Energy Agency Workshop

Düsseldorf, 17.03.2017 Kai-Philipp Kairies

Pumped Hydro Electricity Storage (PHES):

- Developed technology
 - □ No major improvements expected
- New concepts
 - Use sea water as lower reservoir
 - Utilize mining shafts

	unit	2016	2020	2025	2030	delta
Cycle life	-	50k	50k	50k	50k	+ 0%
Calender life	years	60,0	60,0	60,0	60,0	+ 0%
Round-trip efficiency	%	80,0	80,0	80,0	80,0	+ 0%
Self-discharge	% per day	0,0	0,0	0,0	0,0	+ 0%
Energy installation costs	USD/kWh	21,0	21,0	21,0	21,0	+ 0%
Power installation costs	USD/kW	840,0	840,0	840,0	840,0	+ 0%

Compressed Air Electricity Storage (CAES):

- Adiabatic CAES
 - Improve efficiency by storing thermal energy
- Only two facilities worldwide
 - □ Huntdorf (Germany)
 - □ McIntosh (USA)

	unit	2016	2020	2025	2030	delta
Cycle life	-	50k	50k	50k	50k	+ 0%
Calender life	years	50,0	50,0	50,0	50,0	+ 0%
Round-trip efficiency	%	60,0	64,0	67,0	68,0	+ 13%
Self-discharge	% per day	0,5	0,5	0,5	0,5	+ 0%
Energy installation costs	USD/kWh	52,5	48,1	45,7	44,2	-16%
Power installation costs	USD/kW	945,0	781,6	712,7	693,4	-27%

Flywheel Electricity Storage

- Very high self-discharge
 - Used in high frequency / high power applications
- New concepts
 - ☐ High density fly-wheels
 - Superconducting bearings

	unit	2016	2020	2025	2030	delta
Cycle life	-	200k	225k	260k	303k	+ 51%
Calender life	years	20,0	22,5	26,1	30,3	+ 51%
Round-trip efficiency	%	84,0	85,0	86,0	87,0	+ 4%
Self-discharge	% per day	60,0	53,1	45,6	39,2	-35%
Energy installation costs	USD/kWh	3000,0	2655,9	2280,7	1958,5	-35%
Power installation costs	USD/kW	300,0	265,6	228,1	195,9	-35%

Lead-Acid Batteries (Flooded)

- Extensive operating experience in many stationary applications
 - □ Requires refilling
- New concepts
 - □ Carbon electrodes
 - □ Copper stretch metal

	unit	2016	2020	2025	2030	delta
Cycle life	-	1500	1867	2454	3225	+ 115%
Calender life	years	9,0	9,9	11,3	12,8	+ 42%
Round-trip efficiency	%	82,0	83,0	84,2	85,5	+ 4%
Self-discharge	% per day	0,3	0,3	0,3	0,3	+ 0%
Energy installation costs	USD/kWh	147	127	99	77	-47%
Power installation costs	USD/kW	-	_	_	_	

Lead-Acid Batteries (Gel/AGM)

- Extensive operating experience in many stationary applications
 - □ No refilling required
- New concepts
 - □ Carbon electrodes
 - □ Copper stretch metal

	unit	2016	2020	2025	2030	delta
Cycle life	-	1500	1867	2454	3225	+ 115%
Calender life	years	9,0	9,9	11,3	12,8	+ 42%
Round-trip efficiency	%	80,0	81,0	82,2	83,4	+ 4%
Self-discharge	% per day	0,3	0,3	0,3	0,3	+ 0%
Energy installation costs	USD/kWh	263	226	177	138	-47%
Power installation costs	USD/kW		_	_		

Lithium-Ion Batteries (NMC/LMO)

- Substantial scale effects due to international transition towards electro mobility
- New concepts
 - Silicon anode
 - □ 5 V electrolytes

	unit	2016	2020	2025	2030	delta
Cycle life	-	2000	2406	3031	3819	+ 91%
Calender life	years	12,0	13,6	15,8	18,4	+ 53%
Round-trip efficiency	%	92,0	92,5	93,1	93,7	+ 2%
Self-discharge	% per day	0,1	0,1	0,1	0,1	+ 0%
Energy installation costs	USD/kWh	420	339	244	176	-58%
Power installation costs	USD/kW	-	_	<u> </u>	_	

Lithium-Ion Batteries (LFP)

- Comparably low energy density
 - Lower efficiency
 - □ Increased safety
- No expensive metals (Ni, Co, Al, ..) required

	unit	2016	2020	2025	2030	delta
Cycle life	-	2500	3008	3789	4774	+ 91%
Calender life	years	12,0	13,6	15,8	18,4	+ 53%
Round-trip efficiency	%	86,0	86,5	87,0	87,6	+ 2%
Self-discharge	% per day	0,1	0,1	0,1	0,1	+ 0%
Energy installation costs	USD/kWh	578	466	336	242	-58%
Power installation costs	USD/kW	-	_	_		_

Lithium-Ion Batteries (Titanate)

- Excellent cycle life and high-power performance
 - Used in electric busses for fast charging
 - Very low energy density compared to other lithium-ion batteries
 - □ High costs due to low scales

	unit	2016	2020	2025	2030	delta
Cycle life	-	10k	12k	15k	19k	+ 91%
Calender life	years	15,0	16,9	19,7	23,0	+ 53%
Round-trip efficiency	%	96,0	96,5	97,1	97,8	+ 2%
Self-discharge	% per day	0,1	0,1	0,1	0,1	+ 0%
Energy installation costs	USD/kWh	1050	880	665	502	-52%
Power installation costs	USD/kW	-	_	_		

Lithium-Ion Batteries (NCA)

- Substantial scale effects due to international transition towards electro mobility
- High energy density
 - Low material costs per kWh

	unit	2016	2020	2025	2030	delta
Cycle life	-	1000	1203	1516	1910	+ 91%
Calender life	years	12,0	13,6	15,8	18,4	+ 53%
Round-trip efficiency	%	92,0	92,5	93,1	93,7	+ 2%
Self-discharge	% per day	0,2	0,2	0,2	0,2	+ 0%
Energy installation costs	USD/kWh	352	284	204	147	-58%
Power installation costs	USD/kW		_	_	_	

High-Temperature Batteries (ZEBRA)

- ~350°C operating temperature
 - Thermal management required
 - □ Thermal self-discharge
- New concepts
 - Lower operating temperatures
 - Corrosion-resistant materials

	unit	2016	2020	2025	2030	delta
Cycle life	-	3000	3377	3914	4538	+ 51%
Calender life	years	15,0	16,9	19,6	22,7	+ 51%
Round-trip efficiency	%	84,0	85,0	86,0	87,0	+ 4%
Self-discharge	% per day	5,0	5,0	5,0	5,0	+ 0%
Energy installation costs	USD/kWh	399	323	234	169	-58%
Power installation costs	USD/kW	-	_	_	_	

High-Temperature Batteries (NaS)

- Potential for very low prices
 - Sodium and sulfur abundantly available
 - High corrosion requires expensive components

	unit	2016	2020	2025	2030	delta
Cycle life	-	5000	5614	6489	7500	+ 50%
Calender life	years	17,0	18,8	21,4	24,3	+ 43%
Round-trip efficiency	%	80,0	81,4	83,2	85,0	+ 6%
Self-discharge	% per day	7,0	7,0	7,0	7,0	+ 0%
Energy installation costs	USD/kWh	525	436	326	243	-54%
Power installation costs	USD/kW					

Redox-Flow Batteries (Vanadium)

- Only one active material (V)
 - □ No cross contamination
 - □ Very good cyclic lifetime
- New concepts
 - □ Improved membranes
 - Calendric lifetime critical

	unit	2016	2020	2025	2030	delta
Cycle life	-	13k	13k	13k	13k	+ 0%
Calender life	years	12,0	13,7	16,2	19,2	+ 60%
Round-trip efficiency	%	70,0	72,2	75,1	78,1	+ 12%
Self-discharge	% per day	0,2	0,2	0,2	0,2	+ 0%
Energy installation costs	USD/kWh	347	268	183	125	-64%
Power installation costs	USD/kW	1312,5	1063,8	818,2	660,7	-50%

Redox-Flow Batteries (ZnBr)

- Comparably high energy densities
 - □ Very high cyclic lifetime
 - Zn and Br abundantly available
- Complex BMS required
 - Dendrite growth requires regular full discharge

	unit	2016	2020	2025	2030	delta
Cycle life	-	10k	10k	10k	10k	+ 0%
Calender life	years	10,0	11,4	13,5	16,0	+ 60%
Round-trip efficiency	%	70,0	72,2	75,1	78,1	+ 12%
Self-discharge	% per day	15,0	15,0	15,0	15,0	+ 0%
Energy installation costs	USD/kWh	900	696	475	324	-64%
Power installation costs	USD/kW	_	_	_	_	

Battery Inverters (> 30kW)

- Synergies with PV inverters and traction converters (e-mobility)
- New concepts
 - Improved capacitors
 - □ Innovative topologies (e.g. feed-forward controls)

	unit	2016	2020	2025	2030	delta
Cycle life	-	_	_		1	
Calender life	years	15,0	16,8	19,3	22,3	+ 49%
Round-trip efficiency	%	98,0	98,0	98,0	98,0	+ 0%
Self-discharge	% per day	_	_	_	_	_
Energy installation costs	USD/kWh		_	_	_	_
Power installation costs	USD/kW	105,0	89,5	68,9	53,1	-49%

